###
气象:2018,44(2):244-257
本文二维码信息
码上扫一扫!
中国自动土壤水分观测资料质量控制方法设计与效果检验
王佳强,赵煜飞,任芝花,高静
(国家气象信息中心,北京 100081)
Design and Verification of Quality Control Methods for Automatic Soil Moisture Observation Data in China
WANG Jiaqiang,ZHAO Yufei,REN Zhihua,GAO Jing
(National Meteorological Information Centre, Beijing 100081)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1146次   下载 2212
投稿时间:2017-01-20    修订日期:2017-11-03
中文摘要: 土壤湿度资料对气候变化、农业干旱监测、农业气象预报与服务等研究具有重要意义,为剔除土壤湿度观测资料中的异常数据,本文提出了一套适用于全国自动土壤水分观测资料的质量控制方法。首先,以2014年全国自动土壤水分观测资料为基础,根据资料中异常数据的特征将异常数据分为四类。其次,从界限值检查、内部一致性检查、时间一致性检查等方面提出:异常极值检查、异常增大检查、异常减小检查、异常恒定检查四类方法。最后,利用2014—2015年全国观测资料以及中国气象局陆面数据同化系统(CLDAS)土壤体积含水量数据集产品(V2.0)对各检查方法应用效果进行检验,结果表明:(1)四类检查方法均可判断出自动土壤水分观测资料中的疑误数据;(2)四类检查方法的判定结果在时间连续性及空间分布上具有一定的一致性;(3)该质量控制方法可减小观测数据与CLDAS数据之间的均方根误差(RMSE)。目前,该方法已应用于我国气象资料处理业务系统。
Abstract:Soil moisture data play a key role in the study of climate change and agricultural drought monitoring, agricultural weather forecast and service. In order to effectively eliminate the abnormal data in observations, this paper puts forward a set of quality control (QC) methods which could be applied to the data of automatic soil moisture observation station (ASMOS) in China. First, based on the data of ASMOS 2014 in China, the abnormal data are divided into four categories according to their characters. Secondly, under the consideration of three aspects: threshold value check, internal consistency check, time consistency check, the QC methods are designed, which include abnormal extreme check, abnormal increase check, abnormal decrease check and abnormal constant check. Finally, the QC methods are verified by using the data of ASMOS and soil volumetric water content products of CMA Land Data Assimilation System (CLDAS V2.0) in China in 2014-2015. The results show that: (1) the four kinds QC methods can effectively identify the four types of abnormal data. (2) The results from the four kinds QC methods are in good agreement in temporal continuity and spatial distribution. (3) The QC methods can effectively reduce the root mean square error (RMSE) between observation and the CLDAS data. At present, the methods have been applied to the Meteorological Data Processing Service System.
文章编号:     中图分类号:    文献标志码:
基金项目:公益性行业(气象)科研专项(GYHY201106038)和国家自然科学基金项目(91637313)共同资助
引用文本:
王佳强,赵煜飞,任芝花,高静,2018.中国自动土壤水分观测资料质量控制方法设计与效果检验[J].气象,44(2):244-257.
WANG Jiaqiang,ZHAO Yufei,REN Zhihua,GAO Jing,2018.Design and Verification of Quality Control Methods for Automatic Soil Moisture Observation Data in China[J].Meteor Mon,44(2):244-257.