###
气象:2022,48(6):773-782
本文二维码信息
码上扫一扫!
基于区域建模的能见度预报及影响因子分析
赵翠光,赵声蓉,林建,吕终亮,姚莉,韦青
(国家气象中心,北京 100081)
Visibility Forecast and Influence Factor Analysis Based on Regional Modeling
ZHAO Cuiguang,ZHAO Shengrong,LIN Jian,LYU Zhongliang,YAO Li,WEI Qing
(National Meteorological Centre, Beijing 100081)
摘要
图/表
参考文献
相似文献
本文已被:浏览 421次   下载 1245
投稿时间:2021-09-26    修订日期:2022-02-16
中文摘要: 利用2008—2018年逐日能见度站点观测资料,通过旋转经验正交函数分解方法分析得到不同季节能见度天气的客观分区,在此基础上,以2017—2019年欧洲中期天气预报中心全球数值预报模式输出和相关诊断量及站点观测资料分别作为预报因子和预报量,应用多元线性回归、事件概率回归估计和判别分析等综合算法,分区域、分季节建立能见度预报模型,并将区域预报模型应用于区域内站点,得到站点能见度预报结果。以2020年资料为独立样本进行试报,检验结果表明:基于区域建模的能见度预报效果在不同季节、不同预报时效较模式直接输出有很大提升,明显订正了模式对冬季低能见度天气低估的情况,在1 km以下级别低能见度预报中显示出较高的预报技巧,尤其在低能见度出现较多的05时最为明显。因子分析表明,影响能见度的因子主要是与边界层条件密切相关的温、压、湿、风等因子,以及反映下垫面热状况因子、降水相关因子和稳定度因子。不同季节、不同等级能见度预报模型中高频因子不同,春季高频因子主要为温度相关因子,夏季与降水相关的因子选入频次较高,秋、冬季不稳定因子更重要。
Abstract:Based on rotated empirical orthogonal function analysis of the daily observational data of visibility from 2008 to 2018, the objective division of visibility in different seasons is obtained. Taking the global numerical prediction model of ECMWF from 2017 to 2019 as the prediction factor, the visibility prediction model for different regions and seasons is built and the regional model is applied to the station for prediction. Then the ECMWF model forecast data in 2020 are used as an independent sample, and the seasonal forecast of visibility in China is carried out. The results show that using the comprehensive algorithm of multiple linear regression, regression estimate of event possibility and discriminant analysis, the visibility forecast of model output statistics based on regional model output statistics is much better in different seasons and different forecast projections than the model direct output (DMO). The underestimation of DMO is corrected, and the improvement of winter forecast score is the most obvious. The model shows high prediction skills in the prediction of low visibility below 1 km, especially at 05:00 BT. Factor analysis shows the high-frequency factors affecting visibility mainly include temperature, pressure, humidity and wind that are closely related to boundary layer conditions, as well as surface thermal conditions, precipitation related factors and stability. The high-frequency factors selected for visibility prediction of different orders in different seasons are different. Spring is sensitive to temperature-related factors, the factors related to precipitation are selected more frequently in summer, and the unstable factors in autumn and winter are more important.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2017YFC1502005、2018YFC1507205)共同资助
引用文本:
赵翠光,赵声蓉,林建,吕终亮,姚莉,韦青,2022.基于区域建模的能见度预报及影响因子分析[J].气象,48(6):773-782.
ZHAO Cuiguang,ZHAO Shengrong,LIN Jian,LYU Zhongliang,YAO Li,WEI Qing,2022.Visibility Forecast and Influence Factor Analysis Based on Regional Modeling[J].Meteor Mon,48(6):773-782.