本文已被:浏览 1004次 下载 2190次
投稿时间:2008-09-11 修订日期:2009-04-03
投稿时间:2008-09-11 修订日期:2009-04-03
中文摘要: 通过分析2005—2008年影响浙江的梅汛期强降水云团特征,将云团分为偏北型、居中型和偏
南型,研究这三种类型云团云顶亮温与地面1小时强降水极值和10mm/h以上降水覆盖面积关
系,结果表明偏南型和偏北型云团有较多相似特征,而居中型云团较其他两种云团则有较多
相反特征。通过分析1小时强降水相对于云团中心移动路径的落区,指出梅汛期云顶1小时变
温和亮温梯度与地面1小时强降水落区无明显配对模型。随后利用天气形势场资料,分析强
降水云团与环境要素场的关系,指出云顶亮温的宏观特征与中高层的垂直速度、水汽通量密
切相关,最后尝试建立三种类型强降水云团成熟阶段云顶亮温和地面降水人工神经网络预报
方程,给预报员提供参考。
Abstract:By analyzing the cloud characteristics during Meiyu periods from 2005 to 2008, t
he heavy rain clouds were classified into three types, i.e. north type, center
type and south type. The relations between the TBB of cloud top and correspon
ding rainfall extreme and coverage of rainfall rate above 10 mm/h were studied.
The results indicate that the north type and south type clouds have lots of co
mmon feature, and show reverse features compared to the center type. The positi
on of heavy rainfall corresponding to the moving path of clouds revealed that du
ring Meiyu periods the one hour variation and gradient of TBB were not obviously correlative. Then the
relations between environmental factors and clouds were analyzed. And the resul
ts show that the macroscopic features of cloud are obviously correlative with ve
rtical velocity and water vapor flux. At last based on atmospheric circumstances
the n
eural network forecast equations of TBB of cloud top and strong rainfall in matu
re phase of clouds were developed.
keywords: Meiyu periods convective cloud nowcasting
文章编号: 中图分类号: 文献标志码:
基金项目:中国气象科学研究院灾害天气国家重点实验室开放课题《浙江省梅汛期暴雨短时临近预报技
术研究》
作者 | 单位 |
胡波 | 浙江省气象台,杭州 310017 中国气象科学研究院 灾害天气国家重点实验室 |
杜惠良 | 浙江省气象台,杭州 310017 |
滕卫平 | 浙江省气象科学研究所 |
石蓉蓉 | 浙江省气象台,杭州 310017 |
引用文本:
胡波,杜惠良,滕卫平,石蓉蓉,2009.基于云团特征的短时临近强降水预报技术[J].气象,35(9):104-111.
Hu Bo,Du Huiliang,Teng Weiping,Shi Rongrong,2009.A Study of Heavy Rain Nowcasting Based on Cloud Cluster Features During Meiyu Periods [J].Meteor Mon,35(9):104-111.
胡波,杜惠良,滕卫平,石蓉蓉,2009.基于云团特征的短时临近强降水预报技术[J].气象,35(9):104-111.
Hu Bo,Du Huiliang,Teng Weiping,Shi Rongrong,2009.A Study of Heavy Rain Nowcasting Based on Cloud Cluster Features During Meiyu Periods [J].Meteor Mon,35(9):104-111.