本文已被:浏览 1453次 下载 2497次
投稿时间:2012-07-21 修订日期:2013-05-11
投稿时间:2012-07-21 修订日期:2013-05-11
中文摘要: 本文基于华东区域中尺度快速更新同化数值预报模式系统(Shanghai Meteorological Bureau WRF ADAS Rapid Refresh System,SMB WARR),应用时间滞后法进行集合预报试验,试验由7个集合预报成员组成,进行逐小时预报,预报时效为6 h。本文通过对2011年6月17日至9月30日期间降水过程进行集合预报试验,引入面雨量对降水预报进行检验。结果表明:(1)小 大雨量级,集合平均优于集合成员预报,但暴雨量级集合平均不及部分集合成员预报。(2)不同的降水量级,并非都是最接近预报时刻,技巧最高,小 大两量级的降水可以提前6 h预报。(3)降水概率预报优于集合平均预报,具有很好的指示作用。可关注最接近预报时刻,小 中雨以上的降水,预报概率较大时,其可用性较大,而大 暴雨以上的降水,预报概率较小时,可用性较大。
中文关键词: 时间滞后, 集合预报, 面雨量, 短时临近预报
Abstract:Based on East China regional mesoscale numerical forecast model system (Shanghai Meteorological Bureau WRF ADAS Rapid Refresh, SMB WARR), the time lag ensemble forecasting experiment with 7 ensemble members is conducted and routinely updated every hour with hourly output through 6 h forecast length. Evaluation of the hourly area rain of Shanghai from June 17 to September 30, 2011 shows that ensemble mean has better performance than any other members at light to heavy rain levels but worse performance than some members at rainstorm level. Meanwhile, the skill of the latest forecast is not the best and the light to heavy rain could be well forecasted 6 h in ahead. Furthermore, the probability forecast has an advantage over the ensemble mean, and has good directions for the happening of rain in the very short range, also the large (little) probability is more useful at light to moderate rain levels (heavy rain to rainstorm levels) especially the latest forecast.
文章编号: 中图分类号: 文献标志码:
基金项目:上海市科委科研计划项目课题(10231203700)资助
作者 | 单位 |
傅娜 | 南京信息工程大学,南京 210044 浙江省舟山市气象局,舟山 316021 |
陈葆德 | 上海台风研究所,上海 200030 |
谭燕 | 上海台风研究所,上海 200030 |
周伟灿 | 南京信息工程大学,南京 210044 |
引用文本:
傅娜,陈葆德,谭燕,周伟灿,2013.基于快速更新同化的滞后短时集合预报试验及检验[J].气象,39(10):1247-1256.
FU Na,CHEN Baode,TAN Yan,ZHOU Weican,2013.Time-Lag Ensemble Forecasting Experiment and Evaluation Based on SMB-WARR[J].Meteor Mon,39(10):1247-1256.
傅娜,陈葆德,谭燕,周伟灿,2013.基于快速更新同化的滞后短时集合预报试验及检验[J].气象,39(10):1247-1256.
FU Na,CHEN Baode,TAN Yan,ZHOU Weican,2013.Time-Lag Ensemble Forecasting Experiment and Evaluation Based on SMB-WARR[J].Meteor Mon,39(10):1247-1256.