###
气象:2017,43(4):402-412
本文二维码信息
码上扫一扫!
一种多时间尺度SVM局部短时临近降雨预测方法
(1.深圳市气象局,深圳 518040 深圳南方强天气研究重点实验室,深圳 518040;2.中国科学院深圳先进技术研究院,深圳 518055;3.深圳市气象局,深圳 518040;4.深圳市国家气候观象台,深圳 518040)
A Multi Time Scales SVM Method for Local Short Term Rainfall Prediction
(1.Meteorological Bureau of Shenzhen Municipality, Shenzhen 518040 Shenzhen Key Laboratory of Severe Weather in South China, Shenzhen 518040;2.Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055;3.Meteorological Bureau of Shenzhen Municipality, Shenzhen 518040;4.The National Climate Observatory in Shenzhen City, Shenzhen 518040)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1442次   下载 2743
投稿时间:2016-09-14    修订日期:2016-12-23
中文摘要: 近年来支持向量机(support vector machine, SVM)在气象领域得到了广泛应用,在该类应用中单一建模是目前普遍采用的一种思路,单一建模方法寻找的是大而泛的预测模型,预测的目标以面降雨为主。本研究针对每个气象站点进行单独动态建模,建模方法为多时间尺度SVM,探索建立一种动态SVM短时临近降水预测模型,充分考虑不同站点、不同时刻的气象要素差异,初步解决了单一建模过于注重整体规律、建立固定的整体预测函数模型而忽略不同站点、不同时刻局部气象变化的不足,并尝试提高短时临近降水预报的准确率。初步实现了地理空间上更高密度、更精细化的降雨预测,时间分辨率为1 h,TS评分始终保持在较高的水平,对1 h预测的TS评分平均可达40%以上,部分站点接近50%,且模型预测准确率具有一定的稳定性和参考价值。
Abstract:In recent years, SVM (support vector machine) has been widely used in meteorological field. Single modeling is the most common approach for this type of application which just looks for a large, gen eric prediction mode to forecast surface rainfall. In this study, individual meteorological stations were modeled dynamically through multi time scale SVM. So we established a dynamic short term rainfall forecasting model and fully considered the difference of meteorological elements at different time stamps of different sites, solving the problem that the single fixed global model is concerned with the whole law too much and neglects the difficiency of local meteorological changes at different sites and different times. Therefore, our method has the ability of improving the accuracy of short term precipitation forecast. In our study, the prediction for higher density and finer rainfall in geographical space was basically achieved, the temporal resolution was 1 h, and the TS score was always kept at a high level. As a result, the average TS score of 1 h forecast is more than 40%, and for some sites, it is close to 50%. Thus, the prediction accuracy of the model has certain stability and reference value.
文章编号:     中图分类号:    文献标志码:
基金项目:深圳南方强天气研究重点实验室项目(ZDSYS20140715153957030和SZQX2015113)及广东省科技厅项目(2014A020218014)共同资助
引用文本:
贺佳佳,陈凯,陈劲松,徐文文,唐历,刘军,2017.一种多时间尺度SVM局部短时临近降雨预测方法[J].气象,43(4):402-412.
HE Jiajia,CHEN Kai,CHEN Jinsong,XU Wenwen,TANG Li,LIU Jun,2017.A Multi Time Scales SVM Method for Local Short Term Rainfall Prediction[J].Meteor Mon,43(4):402-412.