###
气象:2019,45(5):651-658
本文二维码信息
码上扫一扫!
基于小波分解的沙尘天气发生日数预测组合模型研究——以2008—2016年策勒沙漠绿洲过渡带沙尘天气发生时序为例
庞金凤,刘波,张波,张朋朋,王波,曾凡江
(中国科学院新疆生态与地理研究所,乌鲁木齐 830011;中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,乌鲁木齐 830011;新疆策勒荒漠草地生态系统国家野外科学观测研究站,策勒 848300;中国科学院干旱区地理与生物资源重点实验室,乌鲁木齐 830011;中国科学院大学,北京 100049;临沂大学,山东临沂 276000;西安电子科技大学,西安 710126)
Study on the Combined Model of Forecasting the Days of Sand Dust Weather Based on Wavelet Decomposition—Taking the Time Series of Dust Weather in the Transitional Zone of Qira Desert Oasis During 2008-2016 as an Example
PANG Jinfeng,LIU Bo,ZHANG Bo,ZHANG Pengpeng,WANG Bo,ZENG Fanjiang
(Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011;State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences, Urumqi 830011;Qira National Station of Observation and Research for Desert Grassland Ecosystems, Xinjiang, Qira 848300;Key Laboratory of Biogeography and Bioresource in Arid Zone, Chinese Academy of Sciences, Urumqi 830011;University of Chinese Academy of Sciences, Beijing 100049;Linyi University, Shandong, Linyi 276000;Xidian University, Xi’an 710126)
摘要
图/表
参考文献
相似文献
本文已被:浏览 867次   下载 1829
投稿时间:2018-04-20    修订日期:2018-09-05
中文摘要: 新疆南疆地区是扬沙浮尘的主要高发区,风沙对当地生产生活影响严重。为揭示当地风沙天气变化特征并预测未来变化趋势,通过小波分解方法,将塔克拉玛干沙漠南缘的策勒沙漠 绿洲过渡带2008—2016年沙尘天气发生时序分解为平稳性波动项和非线性趋势项,根据两项数据的特性,针对性选取自回归(AR)模型和最小二乘支持向量机(LSSVM)进行变化趋势预测,最后利用加法原则重构实现沙尘天气发生日数时序预测。结果表明:研究区沙尘天气发生属于典型的春夏型,主要集中在3—9月,峰值出现在5月。组合模型预测值与实测值基本吻合,具有较高的预测精度(绝对误差为4.00 d, 均方根误差为3.76 d),同时,其结果与AR模型、LSSVM模型预测结果相比较也显示出一定的优越性(组合模型相关系数相比AR、LSSVM分别提高了0.12、0.31),具有较好的应用前景,可为研究区预防风沙灾害及指导实际生产生活提供科学依据。
Abstract:The area of southern Xinjiang is a high occurrence area of dust weather, which has a serious impact on local residents’ life. To reveal the characteristics of local wind sand weather variation and predict future trends, a wavelet decomposition method is used to decompose the time series of dust weather in the southern edge of the Taklimakan Desert from 2008 to 2016 into stationary fluctuation terms and nonlinear trend terms, according to the characteristics of the data. The autoregressive (AR) model and the least square support vector machine (LSSVM) are selected to predict the variation trend. Finally, the time series prediction of the number of dust weather days is achieved by the addition principle reconstruction. The results show that the dust weather is a typical spring and summer type, mainly concentrated in the period from March to September, and the peak value appears in May. The predicted value of the combined model is basically consistent with the measured value, and has a higher prediction accuracy (absolute error is 4 d, root mean square error is 3.764 d). Compared with the prediction results of AR model and LSSVM, the correlation coefficient of combined model increases 0.12 and 0.31 respectively), and has a better application prospect. Thus, it could provide scientific basis for preventing wind and sand disaster and guiding actual production and life in the research area.
文章编号:     中图分类号:    文献标志码:
基金项目:国家林业局荒漠化监测项目(014B031)、国家自然科学基金项目(31770638)、山东省自然科学基金项目(ZR2017MC029)共同资助
作者单位
庞金凤 中国科学院新疆生态与地理研究所乌鲁木齐 830011中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室乌鲁木齐 830011新疆策勒荒漠草地生态系统国家野外科学观测研究站策勒 848300中国科学院干旱区地理与生物资源重点实验室乌鲁木齐 830011中国科学院大学北京 100049 
刘波 临沂大学山东临沂 276000 
张波 中国科学院新疆生态与地理研究所乌鲁木齐 830011中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室乌鲁木齐 830011新疆策勒荒漠草地生态系统国家野外科学观测研究站策勒 848300中国科学院干旱区地理与生物资源重点实验室乌鲁木齐 830011 
张朋朋 西安电子科技大学西安 710126 
王波 中国科学院新疆生态与地理研究所乌鲁木齐 830011中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室乌鲁木齐 830011新疆策勒荒漠草地生态系统国家野外科学观测研究站策勒 848300中国科学院干旱区地理与生物资源重点实验室乌鲁木齐 830011中国科学院大学北京 100049 
曾凡江 中国科学院新疆生态与地理研究所乌鲁木齐 830011中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室乌鲁木齐 830011新疆策勒荒漠草地生态系统国家野外科学观测研究站策勒 848300中国科学院干旱区地理与生物资源重点实验室乌鲁木齐 830011 
Author NameAffiliation
PANG Jinfeng Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences, Urumqi 830011Qira National Station of Observation and Research for Desert Grassland Ecosystems, Xinjiang, Qira 848300Key Laboratory of Biogeography and Bioresource in Arid Zone, Chinese Academy of Sciences, Urumqi 830011University of Chinese Academy of Sciences, Beijing 100049 
LIU Bo Linyi University, Shandong, Linyi 276000 
ZHANG Bo Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences, Urumqi 830011Qira National Station of Observation and Research for Desert Grassland Ecosystems, Xinjiang, Qira 848300Key Laboratory of Biogeography and Bioresource in Arid Zone, Chinese Academy of Sciences, Urumqi 830011 
ZHANG Pengpeng Xidian University, Xi’an 710126 
WANG Bo Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences, Urumqi 830011Qira National Station of Observation and Research for Desert Grassland Ecosystems, Xinjiang, Qira 848300Key Laboratory of Biogeography and Bioresource in Arid Zone, Chinese Academy of Sciences, Urumqi 830011University of Chinese Academy of Sciences, Beijing 100049 
ZENG Fanjiang Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences, Urumqi 830011Qira National Station of Observation and Research for Desert Grassland Ecosystems, Xinjiang, Qira 848300Key Laboratory of Biogeography and Bioresource in Arid Zone, Chinese Academy of Sciences, Urumqi 830011 
引用文本:
庞金凤,刘波,张波,张朋朋,王波,曾凡江,2019.基于小波分解的沙尘天气发生日数预测组合模型研究——以2008—2016年策勒沙漠绿洲过渡带沙尘天气发生时序为例[J].气象,45(5):651-658.
PANG Jinfeng,LIU Bo,ZHANG Bo,ZHANG Pengpeng,WANG Bo,ZENG Fanjiang,2019.Study on the Combined Model of Forecasting the Days of Sand Dust Weather Based on Wavelet Decomposition—Taking the Time Series of Dust Weather in the Transitional Zone of Qira Desert Oasis During 2008-2016 as an Example[J].Meteor Mon,45(5):651-658.