本文已被:浏览 213次 下载 945次
投稿时间:2022-06-24 修订日期:2023-01-19
投稿时间:2022-06-24 修订日期:2023-01-19
中文摘要: 为考察基于再分析尺度化因子的集合变换卡尔曼滤波(ETKF_R)初值扰动方案对台风预报的影响,利用中国气象局区域集合预报系统(CMA-REPS)开展了2021年7月18—29日的回算试验,分析了初值扰动结构对登陆台风烟花路径和强度预报的影响,并与ECMWF和NCEP全球集合预报进行对比。结果显示:ETKF_R方法改善了初始三维风场的扰动幅度和结构,但台风初始位置和强度的离散度偏小;ETKF_R方法能合理降低对台风路径预报起关键作用的天气系统的集合离散度,从而限制台风移速和移向的过度发散,提高“烟花”全生命史的路径集合平均预报技巧,并改善台风路径集合平均误差与离散度关系;ETKF_R预报前24 h台风结构和强度的离散度能快速增长,其24 h后台风强度集合平均预报效果与ETKF方案基本相当;与国际先进的全球集合预报相比,ETKF_R对“烟花”登陆的预报效果最优,其统计平均的0~2 d路径预报误差与ECMWF集合相当,而NCEP集合的0~2d路径预报误差最小,但过发散特征明显;同时,ECMWF集合对“烟花”的强度预报总体严重偏弱,而NCEP集合对预报台风最大强度的准确性较高,但预报的台风增强速度比ETKF_R慢。上述研究结果表明,CMA-REPS的台风路径和强度预报具有业务参考价值。
中文关键词: 再分析尺度化因子,初值扰动,台风路径,台风强度
Abstract:To investigate the effect of the ensemble transform Kalman filter with rescaling (ETKF_R) initial perturbation method on typhoon forecasting, we perform retrospective experiments from 18 to 29 July 2021 using China Meteorological Administration-Regional Ensemble Prediction System (CMA-REPS). The effect of the initial perturbation structure on the track and intensity forecasts of Typhoon In-Fa is analyzed and compared with the ECMWF and NCEP global ensemble forecasts. The results can be summarized as follows. The ETKF_R method improves the amplitude and structure of initial three-dimensional wind field perturbations, but the initial ensemble spreads of typhoon location and intensity are small. By reasonably reducing the ensemble spread of weather system which significantly influences the forecast of typhoon track, ETKF_R can constrain the excessive dispersion of typhoon translation speed and direction. This further improves the ensemble mean track forecast skill for the whole life of Typhoon In-Fa and the relationship between ensemble mean error and ensemble spread of typhoon track. In ETKF_R, the ensemble spreads of typhoon structure and intensity grow rapidly in the first 24 h, and the performance of ensemble mean intensity forecast after 24 h is comparable to that of the ETKF method without rescaling. Compared with the international advanced global ensemble forecasts, ETKF_R has the best landfalling forecast of Typhoon In-Fa. The statistically averaged 0-2 d track forecast error of ETKF_R is comparable to that of ECMWF ensemble. Although NCEP ensemble has the smallest 0-2 d track forecast error, its overdispersed feature is obvious. Meanwhile, ECMWF ensemble generally underestimates the intensity of Typhoon In-Fa, while NCEP ensemble has a high accuracy in predicting the maximum intensity of Typhoon In-Fa, with a slower intensification speed than ETKF_R. Our results suggest that the forecast of typhoon track and intensity by CMA-REPS has operational significance of reference.
文章编号: 中图分类号:P456,P458 文献标志码:
基金项目:国家重点研发计划(2021YFC3000902、2017YFC1501604)、中国气象局地球系统数值预报中心青年基金项目(NWPC-QNJJ-2018)共同资助
引用文本:
岳健,董林,陈静,王婧卓,李红祺,2023.基于再分析尺度化因子的集合预报初值扰动对台风烟花(2106)预报的影响[J].气象,49(7):773-789.
YUE Jian,DONG Lin,CHEN Jing,WANG Jingzhuo,LI Hongqi,2023.Effect of Ensemble Initial Perturbations with Rescaling on the Forecast of Typhoon In-Fa (2106)[J].Meteor Mon,49(7):773-789.
岳健,董林,陈静,王婧卓,李红祺,2023.基于再分析尺度化因子的集合预报初值扰动对台风烟花(2106)预报的影响[J].气象,49(7):773-789.
YUE Jian,DONG Lin,CHEN Jing,WANG Jingzhuo,LI Hongqi,2023.Effect of Ensemble Initial Perturbations with Rescaling on the Forecast of Typhoon In-Fa (2106)[J].Meteor Mon,49(7):773-789.