###
气象:2024,50(8):1012-1023
本文二维码信息
码上扫一扫!
冷涡背景下积层混合云降水的雨滴谱垂直分布及演变
孙钦宏,马洪波,张景红,谭月
(吉林省气象灾害防御技术中心,长春 130062; 中国气象局 吉林省人民政府人工影响天气联合开放实验室,长春 130062; 中国气象局吉林云物理野外科学试验基地,长春 130062; 吉林省气象台,长春 130062)
Vertical Characteristic and Evolution of Raindrop Size Distribution for Stratiform and Embedded Convective Cloud Precipitation Under the Background of Cold Vortex
SUN Qinhong,MA Hongbo,ZHANG Jinghong,TAN Yue
(Jilin Technology Center of Meteorological Disaster Prevention, Changchun 130062; CMA Joint Open Laboratory for Weather Modification People’s Government of Jilin Province, Changchun 130062; CMA Jilin Cloud Physics Field Scientific Test Base, Changchun 130062; Jilin Meteorological Observatory, Changchun 130062)
摘要
图/表
参考文献
相似文献
本文已被:浏览 64次   下载 766
投稿时间:2023-11-29    修订日期:2024-06-15
中文摘要: 利用2021年8月24—25日吉林靖宇微雨雷达反演的垂直探测资料,结合雨滴谱仪、雨量计等地面资料,分析了长白山麓一次混合云降水过程的雨滴谱垂直分布及微物理特征参量演变特征。结果表明:雨量计、雨滴谱仪探测地面雨量与微雨雷达反演的150 m高度雨量变化趋势基本一致,但观测值与反演值存在一定偏差。Gamma函数对地面雨滴谱拟合优度达到0.99,拟合效果优于微雨雷达,对微雨雷达反演的大雨滴数浓度拟合值明显偏小。不同直径(D)雨滴对不同高度微物理参量贡献不同,小雨滴(D≤1.0 mm)对雨强、反射率因子、液态水含量、总数浓度贡献率一般随着高度降低而降低,中雨滴(1.0 mm<D≤3.0 mm)和大雨滴(D>3.0 mm)〖JP2〗对参量贡献率基本随着高度降低而升高。不同降水阶段的雨滴蒸发、碰并作用不同,降水前期气温高且湿度低,雨滴下落过程中蒸发作用较强,而降水集中期相对湿度接近饱和,雨滴碰并增长作用明显。
Abstract:Using the observation data of micro rain radar, raindrop disdrometer and rain gauge at Jingyu Station, Jilin Province, from 24 to 25 August 2021, the vertical distribution of raindrop size and the evolution of microphysical characteristic parameters in a mixed cloud precipitation process at Changbai Mountain are analyzed. The results show that the rainfall variation trend with high resolution of 150 m retrieved by micro rain radar and the ground rainfall measured by raindrop disdrometer and rain gauge are basically consistent, but there are some deviations between the observed values and inversion values. The Gamma function goodness of fit clocks up 0.99 for the ground raindrop size distribution, which is better than that of micro rain radar. In addition, the fitting value for number concentration of large raindrops (D>3.0 mm) retrieved by micro rain radar is significantly smaller. Research also shows that raindrops in different diameters have different contributions to microphysical parameters at different heights. For small raindrops (D≤1.0 mm), its contribution rate to rainfall intensity, reflectivity factor, liquid water content, and total number concentration decreases generally with lowering height. However, the contribution rate of medium raindrops (1.0 mm<D≤3.0 mm) and large raindrops to these parameters increases as height declines. Besides, the evaporation and coagulation effects of raindrops show varieties in different precipitation stages. In the early precipitation stage, the evaporation effects of raindrops is stronger due to higher temperature and lower relative humidity in the falling process of raindrops. In the stage of concentrated precipitation, the coagulation effect of raindrops is more evident with the relative humidity approaching saturation.
文章编号:     中图分类号:P412    文献标志码:
基金项目:国家自然科学基金面上基金项目(41975182)、吉林省科技发展计划重点研发项目(20230203126SF)和吉林省气象局技术发展专项(202210、202308)共同资助
引用文本:
孙钦宏,马洪波,张景红,谭月,2024.冷涡背景下积层混合云降水的雨滴谱垂直分布及演变[J].气象,50(8):1012-1023.
SUN Qinhong,MA Hongbo,ZHANG Jinghong,TAN Yue,2024.Vertical Characteristic and Evolution of Raindrop Size Distribution for Stratiform and Embedded Convective Cloud Precipitation Under the Background of Cold Vortex[J].Meteor Mon,50(8):1012-1023.